Brightening with Lightening

The United Arab Emirates Air Force (UAEAF) will get 150 Northrop Grumman AGM-88E Advanced Anti-Radiation Guided Missiles (AARGMs) via the country’s proposed arms deal with the United States.

Announced on 10th November, these missiles will adorn the 50 Lockheed Martin F-35A Lightning-II combat aircraft the UAEAF is seeking as part of the deal. The F-35A is to receive software and hardware updates optimising the jet to support the Suppression of Enemy Air Defence (SEAD) mission following a contract awarded by the US Air Force to Lockheed Martin this June.

Back in late September it was reported that the UAEAF has shown interest in acquiring the Boeing EA-18G Growler electronic warfare and SEAD aircraft. However, some members of the Israeli airpower community had been unhappy about the UAE receiving the aircraft. The EA-18G is thus conspicuous by its absence in the proposed purchase inventory.

The UAE has requested 50 F-35A jets from the United States. These aircraft are expected to be configured to perform SEAD. (USAF)

SEAD Upgrade

The F-35 SEAD upgrade could confer improvements to the jet’s BAE Systems’ AN/ASQ-239 electronic warfare system. This is thought to cover wavebands of 500 megahertz/MHz to 40 gigahertz/GHz. Software improvements to the AN/ASQ-239 could provide necessary precision to target hostile radars with the AGM-88E.

AGM-88E

The AGM-88E is the latest version of the venerable Texas Instruments AGM-88 HARM (High Speed Anti-Radiation Missile) series. The AGM-88E design adds a GNSS (Global Navigation Satellite System) receiver and a Millimetric Wave (MMW) radar.

The AGM-88E is a step change for the capabilities of the legacy AGM-88 series of anti-radiation missile. (Northrop Grumman)

The former lets the missile be loaded with an emitter’s GNSS coordinates meaning can still be targeted even if the radar transmission is switched off in an attempt to break the missile’s lock. It also allows the missile to be programmed with geographical zones outside of which it cannot fly. The MMW radar improves battle damage assessment as the short wavelengths accompanying frequencies of 30GHz and above depict targets in striking detail. This aids post mission analysis as the radar imagery can be viewed to ensure that the missile struck its intended target.

Between 2006 and 2007 the UAEAF acquired 159 legacy AGM-88B/C rounds. It is most likely these missiles which will be remanufactured as the AGM-88E.

The UAEAF may have failed to secure the EA-18G for now but, pending authorisation by the US Congress, the force should still receive a potent SEAD capability via the F-35A and AGM-88E.

Eagle’s Energetic Electrons

The radar equipping the USAF’s F-15EX jets could receive future electronic attack enhancements to help air defence suppression.

Raytheon won a contract from Boeing on 1st October for the supply of eight AN/APG-82(V)1 X-band (8.5GHz to 10.68GHz) fire control radars to equip the latter’s F-15EX combat aircraft. The F-15EX is a beefed-up version of the legacy McDonnell Douglas F-15E Strike Eagle which entered US Air Force service in 1989. According to the US Congressional Research Service, the US Congress’ public policy research organisation, the F-15EX programme kicks off with a purchase of eight F-15EX jets for $1.1 billion.

The first AN/APG-82(V)1 radar was delivered by Raytheon to Boeing for F-15E installation in 2010. Michelle Styczynski, Raytheon’s senior director of F-15 programmes, told chainhomehigh that there are no physical changes between the AN/APG-82(V)1 radars equipping the F-15Es and F-15EX. The only differences are minor software changes.

F-15EX Radar
An artist’s rendering of two F-15EX jets. These aircraft will replace the USAF’s current F-15C/D fleet. (Boeing)

Hardware and Software

Ms. Styczynski expects improvements to the AN/APG-82(V)1 during its service life: “The future contains both hardware and software updates. There are a bunch of different things that we could offer.” One potential area is inserting technology that allows for enhanced electronic attack.

Given that the AN/APG-82(V)1 uses a Gallium Arsenide Active Electronically Scanned Array (AESA), software could be added enabling the radar to double as a jammer. This could direct conventional high-power jamming or discreet jamming waveforms into hostile radars. These waveforms could be generated by the aircraft’s BAE Systems Eagle Passive Active Warning Survivability System and then transmitted by the radar.

Electronic Attack

There is growing interest within the North Atlantic Treaty Organisation (NATO) airpower community in harnessing combat aircraft radar for electronic attack. For example, the Royal Air Force’s Eurofighter Typhoon-F/GR4 Tranche-3 combat aircraft will receive Leonardo’s ECRS Mk.2 X-band AESA radar which can perform electronic attack. Such an attribute is seen as increasingly important for air defence suppression. It can complement anti-radiation missiles, air-launched radio frequency decoys and high-power jamming pods to engage hostile ground-based air defences.

Podcast – Luftwaffe Fighter Radio Navigation

Not only did Luftwaffe bombers use radio waves to find their targets, they were also used by fighters.

Knickebein or ‘crooked leg’ and X-Gerät were the Luftwaffe’s two famous systems for helping bombers find their targets. Fighters used the less well known Bernhard/Berhardine apparatus. Frank Dörenberg has studied Bernhard/Bernhardine extensively, discussing the system at length on his website.

We chatted to Frank about Bernhard/Bernhardine for our inaugural chainhomehigh podcast.

How it worked

Bernhard/Bernhardine had two components; a radio beacon on the ground and a printer in the aircraft. The beacon rotated through 360 degrees every 30 seconds. An aircraft within 80 nautical miles (150 kilometres) of the beacon received its transmissions.

When the beacon swept past the fighter, the fighter’s radio detected the signal. This activated the printer which turned the beacon’s coded signal into information.

A rotating Bernhard/Bernhardine radio beacon. Transmissions were made on Very and Ultra High Frequency wavebands.

Bombers

Each beacon had its own identity code. By knowing the location of the beacon the fighter crew determined where their targets were. All they had to do was check the paper printout giving their position relative to the beacon.

Ground controllers gave the crew the location of the enemy bombers. The crew checked their position relative to the beacon. This allowed them to determine a vector to the bombers. Bernhard/Bernhardine could also help a fighter find a nearby airfield.

Information

The Bernhard/Bernhardine system became more sophisticated as the war continued. For example, the radio beacon eventually transmitted data on the location of enemy aircraft.

Into Service

Between 1941 and 1944 17 radio beacons were built across Germany and occupied Europe. Each beacon weighed at least 100 tonnes and was mounted on circular rail tracks with a diameter of 22.5 metres (74 feet). They could take six months to build and this slowed Bernhard/Bernhardine’s roll out.

Legacy

The system was ahead of its time. Like today’s Link-11 and Link-16 tactical data links supporting naval and air operations, Bernhard/Bernhardine conveyed important tactical information except it was a ‘receive only’ system, unlike the tactical data links. That said, its legacy lives on today.

The radios and printer which allowed a Luftwaffe fighter crew to use the Bernhard/Bernhardine system.

Soveronty

Sources close to the Heer (German Army) have confirmed to chainhomehigh that the force’s Soveron-D radio is in service.

Rohde and Schwarz’ Soveron-D tactical radio is one part of the German Army’s Streitkräftegemeinsame verbundfähige Funkgeräteausstattung (SVFUA/Joint Armed Forces Radio Equipment) programme. This vehicle and fixed-site radio carries voice and data traffic across Very/Ultra High Frequency wavebands of 30 megahertz/MHz to 600MHz.

Soveron-D equips German Army command and control vehicles and field headquarters . The radio has two modules, each of which can use different networks with different security classifications. (Rohde and Schwarz)

Waveforms

The Soveron-D uses several waveforms. These include the NATO (North Atlantic Treaty Organisation) and allied SATURN (Second Generation Anti-Jam Tactical UHF Radio for NATO) air-to-air and air-to-ground/ground-to-air (225MHz to 400MHz) waveforms. Proprietary German Army waveforms carried by Soveron-D include Rohde and Schwarz’ High Data Rate (HDR) waveform suite.

Joining SATURN and the HDR suite is the ESSOR (European Secure Software Defined Radio) high data rate waveform. This should be added to the Sovieron-D from 2023. ESSOR is designed to ease coalition communications.

The waveform is being developed by the A4ESSOR consortium comprising Finland (Bittium), France (Thales), Italy (Leonardo), Poland (Radmor), Spain (Indra) and Germany. The country joined ESSOR in 2019 with Rohde and Schwarz leading her industrial effort. ESSOR will be used by the land forces of the partner nations, and possibly other European nations to aid operational and tactical command and control during coalition operations.

Role

Soveron-D equips field headquarters, and command and control vehicles. The transceiver has two radio modules, one for each channel. Each of these can use different levels of classification. For example, one module might use a net with a restricted level of classification. The other could use a secret net for connection to higher echelons.

Rohde and Schwarz sources have told the author in the past that the German Army will use the Soveron-D to help manage communication networks from brigade to platoon Ievel during both unilateral and multilateral operations.

Growler Grumblings

No sooner were diplomatic relations between Israel and the United Arab Emirates concluded, than a stramash on arms sales developed.

On 3rd September the New York Times reported that Israel’s Prime Minister Benjamin Netanyahu had privately agreed with US plans to sell the United Arab Emirates (UAE) advanced materiel. One day later news emerged that Bibi was publicly opposing the deal. One sticking point appeared to be the possible sale to the UAE of Boeing’s EA-18G Growler electronic warfare jets.

An article in The Economist conveyed concerns from some experts in Israel that furnishing the Emirates with a platform like the EA-18G risked the techno-military advantage Israel enjoys over its Arab neighbours. The US began supplying equipment en masse to Israel in the wake of the 1968 Six Day War.

The UAE Air Force is interested in acquiring the EA-18G Growler electronic warfare plane. The US could offer a ‘downtuned’ version of the jet to the UAE to ally Israeli concerns. (RAAF)

That a potential EA-18G sale might raise eyebrows in Israel is not surprising. The jet is the most sophisticated air defence suppression platform out there. It can carry sophisticated electronic warfare payloads to jam the ground-based air surveillance and fire control/ground-controlled interception radars air defences rely on. The Growler can also launch Raytheon/Northrop Grumman AGM-88E/F High Speed Anti-Radiation Missiles.

Subsystems

The UAE and Israel maybe able to compromise. The US could offer the UAE a ‘down-tuned’ version of the Growler. This could omit the Next Generation Jammer (NGJ) suite of systems the US Navy and Royal Australian Air Force’s EA-18Gs are receiving. Instead the US could offer the legacy L3Harris AN/ALQ-99 electronic attack system that the NGJ replaces. The AN/ALQ-99 is thought to be capable of attacking radars transmitting on frequencies between 30 megahertz to ten gigahertz at ranges of up to 216 nautical miles/nm (400 kilometres) from 30,000 feet/ft (9,144 metres/m) altitude. It may even be possible to cascade AN/ALQ-99s to the UAE Air Force (UAEAF) as they are withdrawn from US Navy service to make way for the NGJ.

Likewise, the UAEAF already uses Raytheon’s AGM-88C HARMs deployed onboard its General Dynamics/Lockheed Martin F-16E Fighting Falcon jets. The air force acquired 159 examples between 2006 and 2007. The US could offer to continue supplying legacy AGM-88B/C rounds but demur from providing the more advanced AGM-88E/F variants.

Folding the AN/ALQ-99 and AGM-88B/C into an EA-18G purchase would offer the UAEAF an advanced defence suppression platform, but with a specification which might ally Israeli concerns.

SIGINT Up North

Why was a Norwegian signals intelligence aircraft snooping around the Barents Sea this week?

On 9th September Russia’s official TASS news agency reported that Luftforsvaret (Royal Norwegian Air Force/RNOAF) Dassault Falcon-20 signals intelligence and Boeing P-8S Poseidon maritime patrol aircraft had been detected and intercepted over the Barents Sea. Two MiG-29 (NATO reporting name Fulcrum) series combat aircraft were scrambled to escort both aircraft away from Russian airspace.

What was the Falcon-20 looking for? Russia’s northwest Arctic region has recently received new radars. In 2018 a single Rezonans-NE Very High Frequency (133 megahertz/MHz to 144MHz/216MHz to 225MHz) ground-based air surveillance radar was deployed to the Novaya Zemlya archipelago. With a reported range of 594 nautical miles (1,100 kilometres) it provides coverage over air approaches into northwest Russia. These are likely ingress roots for NATO (North Atlantic Treaty Organisation) aircraft during any future war with Russia.

29B6 Container Radar
The Russian Ministry of Defence has plans to deploy 29B6 Container high frequency radars to the Arctic regions. (Russian MOD)

The region has also received NIIDAR Podsolnukh-E High Frequency (HF: three megahertz to 30MHz) coastal/ground-based air surveillance which have an instrumented range of 243nm (450km) providing low altitude coverage. Plans are afoot to deploy NIIDAR 29B6 Container HF ground-based air surveillance radars to the Arctic. The radar has an instrumented range of 1,619nm (3000km).

Russia has a penchant for HF and VHF radars as they may be able to detect aircraft with low Radar Cross Sections (RCS). While the radars do not provide the necessary precision for surface-to-air missile engagements, they can be used for vectoring fighters towards hostile aircraft.

ELINT

These radars will be of interest to the RNOAF. The country is buying 45 Lockheed Martin F-35A Lightning-II combat aircraft. It would be prudent for the RNOAF to gather as much Electronic Intelligence (ELINT) on these radars as possible given their potential to detect low RCS targets like the F-35A.

TASS reported that the RNOAF jets were initially detected by Russian radar. This may have handed the Norwegians valuable ELINT when the radars were activated and revealed the strength of radar coverage. Russian air defenders may be confident that their HF/VHF radars can reduce the low-RCS threat. This does not mean the country’s rivals will not try to collect ELINT on these systems to understand how they could be outfoxed in the future.

Until the Next Time?

Ireland could spend up to $60 million on new radars and air defence systems to deter Russian Air Force activity near her airspace.

Irish neutrality has not stopped Russian Air Force (RUAF) aircraft from skirting Irish airspace during the first half of this year. In March Tupolev Tu-95MS strategic bombers skirted the west coast of Ireland, allegedly entering Irish controlled airspace.

The RUAF flights were detected by the Royal Air Force’s UKADGE (UK Air Defence Ground Environment). The UKADGE is the command and control, and surveillance element of the UK’s Integrated Air Defence System (IADS). The Russian aircraft were most likely detected by RAF Lockheed Martin AN/TPS-77 L-band (1.215 gigahertz/GHz to 1.4GHz) ground-based air surveillance radars. One AN/TPS-77 is based at the Saxa Vord Remote Radar Head (RRH) island of Urst, the most northerly of the Shetland Islands off the northeast coast of Scotland. A Lockheed Martin AN/FPS-117/Type-92 L-band radar at RRH Benbecula on the eponymous Outer Hebrides island off the northwest coast of Scotland may have also detected the aircraft. Both these radars have an instrumented range of 250 nautical mile/nm (470 kilometres).

The Russian aircraft may have skirted the northern coasts of Scandinavia and headed southwest into the Atlantic towards the British Isles. Radar pictures would have been sent by the RRHs to the UKADGE headquarters at RAF Boulmer, northeast England. RAF commanders would then have scrambled Eurofighter Typhoon F/GR4A combat aircraft on Quick Reaction Alert to ensure the bombers did not violate UK airspace.

Russian Air Force Tu-95MS strategic bombers allegedly entered Irish airspace in March, prompting questions about Ireland’s air defence posture. (UK MOD)

Flight Information Regions

Did the RAF also perform this action on behalf of Ireland? The British Isles are surrounded by two FIRS. Along with Shanwick Oceanic Control Area (OCA) covering the approaches to the western coast of Ireland parts of the western coast of the United Kingdom. Shanwick OCA is managed bilaterally by the UK’s National Air Traffic Service (NATS) and the Irish Aviation Authority (IAA). London FIR covers approaches to the southern coast of Ireland, the southwest and southern coasts of England and Wales’ Irish Sea coast. Finally, Scottish IFR covers Scotland and Northern Ireland. In March, the UK Defence Journal reported that a bilateral agreement involving Ireland and the UK allows RAF aircraft to intercept suspicious aircraft flying in the Shanwick OCA. It was this region through which Russian aircraft allegedly flew in March.

Shanwick OCA covers the outer western air approaches to the British Isles. It is managed bilaterally by the British and Irish air traffic control authorities. (NATS)

An RAF spokesperson told chainhomehigh that the air force is only responsible for providing air defence coverage over the UK FIRs and “a portion of the NATO (North Atlantic Treaty Organisation) Air Policing Area (APA).” This encompasses RAF support of NATO’s Baltic and Icelandic APAs. The RAF said cryptically that UK air defence coverage “does not include the Irish Flight Information Region.” As shown by the maps accompanying this article, the Irish FIR is distinct from the Shanwick OCA. The spokesperson continued that the RAF does perform Air Traffic Control (ATC) coordination with the Irish ATC authority, and will “respond to any instance of an unidentified aircraft entering or approaching the UK FIR to ensure the integrity of UK airspace.” Does the bilateral agreement referred to above have a provision for the RAF to intercept suspicious aircraft in the Shanwick OCA for the mutual benefit of Ireland and the UK? 

This map illustrates the coverage provided across the British Isles by the RAF’s ground-based air surveillance radars.

Ireland’s Air Defence

This would make sense for both countries. Ireland lacks the fast jets needed to intercept RUAF aircraft and the IADS needed to manage these interceptions. Another problem is that RUAF aircraft routinely fly in the vicinity of Ireland without having filed flight plans with their transponders switched off. This means the unidentified aircraft appear without warning to Irish ATC.

As the UK’s IADS can detect and track uncooperative targets it makes sense to have an agreement by which the RAF can handle such situations even if this is restricted to Shanwick OCA. The RAF must be able to detect RUAF aircraft potentially threatening UK airspace approaching from the West. Intercepting RUAF aircraft flying in, or near the Shanwick OCA provides defence in depth. It allows the RAF to shadow the offending planes ensuring that they do not become a threat to the UK. Having the RAF respond to these Russian challenges also helps to protect Irish airspace. In short this benefits both countries.

From an operational perspective, the An tAerchór (Irish Air Corps/IAC) does not perform air policing of Irish airspace per se. A statement supplied to chainhomehigh by the Ireland’s Department of Defence (DOD) said that the IAC is “not tasked or equipped to monitor and communicate with aircraft (military or otherwise) overflying Irish airspace.” The exception to this being the IAC’s provision of ATC services to aircraft overflying Casement Aerodrome southwest of Dublin, the sole airfield and headquarters of the IAC. 

Integrated Air Defence System

Over the long term, the IAC may invest in an IADS. The Republic of Ireland’s 2015 Defence White Paper stated that “should additional funding, beyond that required to maintain existing capabilities become available, the development of a radar surveillance capability is a priority for the Air Corps.”

Big money could be needed for such a purchase. Sufficient ground-based air surveillance radars would be required to provide coverage over all 70,273 square kilometres (27,133 square miles) of Irish territory. Using the AN/TPS-77 as a yardstick, a single radar would be sufficient as one can monitor 693,977 square kilometres (267,946 square miles). This would require at outlay of $19.7 million for a single radar based on average AN/TPS-77 prices.

It may be prudent to procure two systems to provide redundancy. One could be positioned on the west coast and one on the east coast. This would provide coverage of eastern and western air approaches, along with Irish airspace. Alongside the radar the IAC would need the required command, control and communications equipment to connect these radars to an Air Operations Centre, and to fuse the radar pictures into a single Recognised Air Picture (RAP) of Irish airspace and air approaches. Additional links from the IAC’s ATC system may be required to ensure that any future Irish IADS has the most detailed RAP possible.

The DOD statement added that while the department demurs from commenting on operational and security matters strict conditions must be met before a military aircraft can overfly Irish territory. Any future RUAF violations of Irish airspace, deliberate or otherwise, could trigger a diplomatic crisis between Dublin and Moscow. Although expensive to procure a robust IADS might help to deter any future violations.

Growlers for Growlers

The suggestion that the US could acquire two S-400 systems from Turkey has been unsurprisingly opposed by Russia. Such an acquisition could yield the US and her allies a treasure trove of intelligence.

A mooted plan for the US to buy S-400 SAM systems from Turkey could prompt a ELINT bonanza.

Senator John Thune, a Republican Senator from South Dakota has proposed that the US purchase the Almaz-Antey S-400 (NATO reporting name SA-21 Growler) long-range/high-altitude Surface-to-Air Missile (SAM) systems that Turkey procured from Russia.

In 2017 Turkey procured two S-400 systems, a total of four battalions, for $2.4 billion with deliveries commencing in 2019. This threw a spanner in the works of plans by the Türk Hava Kuvvetleri (THK/Turkish Air Force) to acquire Lockheed Martin F-35A Lightning-II combat aircraft.

A total of 120 aircraft were expected to be acquired before the acquisition was cancelled by the administration of President Donald Trump in July 2019. The administration was concerned that the S-400’s sensors, principally its ground-based air defence and fire control radars, could collect sensitive information regarding the F-35A’s radar cross section and electromagnetic emissions.

The cancellation of the acquisition resulted in the four THK F-35As delivered to Luke airbase, Arizona, being rerolled to furnish the US Air Force.

Nyet from Moscow

Mr. Thune suggested that the US acquisition of both S-400 systems would remove them from Turkey and hence THK control allowing F-35A deliveries to continue. Russian lawmakers protested the proposal with Leonid Slutsky, chair of the Russian Duma (parliament) committee on international affairs, condemning Mr. Thune’s proposal as “unprincipled and cynical.”

It seems unlikely that such a purchase will occur in the near term. Such a move by Ankara would make Moscow hopping mad. Yet such a purchase by the US would offer serious benefits.

Intelligent Decision

Aside from resuming F-35A deliveries to Turkey, it would give the United States Air Force, and US armed forces in general, once of the world’s most advanced air defence systems to pour over at their leisure.

The US Department of Defence already possesses a smorgasbord of Soviet-era SAMs and ground-based air surveillance and fire control/ground-controlled interception radars. These have been sourced from a myriad of ex-Warsaw Pact countries. They are routinely used to provide realistic threats during US-based international air exercises like Red Flag.

The US Navy and USAF are both overhauling their Suppression/Destruction of Enemy Air Defence (S/DEAD) postures. The US Navy is deploying the Boeing EA-18G Growler electronic warfare and S/DEAD aircraft, along with Northrop Grumman’s AGM-88E Advanced Anti-Radar Guided Missile, a  variant of the venerable AGM-88 HARM (High Speed Anti-Radar Missile) family. The US Air Force is optimising the F-35A to perform S/DEAD using Northrop Grumman’s AGM-88F HCS (HARM Control System) AGM-88 variant.

US and allied aircraft operating over Syria have flown in airspace thought to be protected by the S-400. Russia has deployed two systems to the northwest of the country since 2015.

However, there is doubt in some quarters of the NATO electronic warfare community as to whether either system has been activated in full for fear that Electronic Intelligence (ELINT) regarding their 91N6 (NATO reporting name Big Bird) S-band (2.3 gigahertz/GHz to 2.5GHz/2.7GHz to 3.7GHz) and 96L6E (NATO reporting name Cheese Board) C-band (5.25GHz to 5.925GHz) early warning and target acquisition radar could be hoovered up by US and NATO ELINT aircraft.

For all intents and purposes much of the S-400’s design and capabilities remain a mystery. No wonder Moscow is nervous about NATO getting its hands on a couple.

New Signals Intelligence Platforms for Republic of Korea Air Force

The Republic of Korea Air Force (ROKAF) could spend up to $725 million on new SIGINT aircraft between now and 2026.

Plans were approved by Republic of Korea’s Defence Project Promotion Committee (DPPC) on 26th June to acquire new Signals Intelligence (SIGINT) platforms for the ROKAF with a budget of $725 million.

The ROKAF uses two Dassault Falcon-2000S and four BAE Systems Hawker RC-800 SIGINT gathering aircraft. The Falcon-2000S jets were delivered in 2017. The RC-800 aircraft are slightly older, entering service in the early 2000s. DPPC plans call for four of the RC-800s to be replaced with the new SIGINT acquisition.

Wavebands

Both the Falcon-2000S and RC-800s are believed to gather Communications Intelligence (COMINT) and Electronic Intelligence (ELINT) at the operational, and possibly strategic, levels. To this end, they are thought to collect COMINT/ELINT across 500 megahertz to 40 gigahertz wavebands. This intelligence maybe analysed onboard by electronic warfare specialists and/or transmitted across air-to-ground datalinks.

It is reasonable to assume that the ROKAF may choose to procure at least four new aircraft to replace the same number of RC-800s. The force could spend up to $175 million on each aircraft with a residual $25 million covering training and other ancillary costs. Local reports state that the first new SIGINT aircraft could enter service in 2026.

The Republic of Korea Air Force is looking for new signals intelligence aircraft to replace its existing RC-800 jets. (L3Harris)

King SINCGARS

The SINCGARS tactical communications waveform is in rude health despite its age. Is this thanks to its robust performance in Ukraine?

A recent article published by Forecast International touted the enduring appeal of the SINCGARS (Single Channel Ground and Airborne Radio System) tactical communications waveform.

The piece notes that the past three years has seen orders for radios using the SINCGARS waveform from Kuwait, Morocco, and Saudi Arabia, to name just three countries. Meanwhile L3Harris, SINGARS’ prime contractor, continues to support the waveform in US Army and US armed forces service, avid SINCGARS users, along with a plethora of other NATO members.

Life in the old hertz yet

SINCGARS entered US Army service in the early 1990s, the force’s 1st Division being the first unit to get SINCGARS-compatible radios. Sales have been following ever since.

Using frequencies of 30 megahertz/MHz to 80MHz, SINCGARS was revolutionary. It can handle digital and analogue traffic, move data at rates of 16 kilobits-per-second and be used for clear and frequency-hopping communications.

The US government supplied an undisclosed number of L3Harris radios using the SINCGARS waveform to Ukraine since the latter’s decent into civil war in 2014.

Anecdotal evidence shared with the author by members of the Ukrainian tactical communications and electronic warfare communities notes that SINCGARS has remained largely unaffected by significant Russian jamming. This alone is a good advertisement for SINCGARS. Furthermore, as of 2018 the US Army is enhancing the waveform using lessons learned from Ukraine. Despite hitting its third decade, SINCGARS stills has some miles left to run.

The SINCGARS waveform is in high demand thanks in part to its robust performance in Ukraine in the face of Russian jamming. (Photo: US DOD)

%d bloggers like this: